Use of synthetic derivatives to determine the minimal active structure of cytokine-inducing lipoteichoic acid.
نویسندگان
چکیده
Lipoteichoic acid (LTA) from gram-positive bacteria is the counterpart to lipopolysaccharide from gram-negative bacteria. LTA, which activates Toll-like receptor 2 (TLR2), induces a unique cytokine and chemokine pattern. The chemical synthesis of LTA proved its immunostimulatory properties. To determine the minimal active structure of LTA, we reduced synthetic LTA in a number of steps down to the synthetic anchor and employed these molecules to stimulate interleukin-8 (IL-8) release in human whole blood. Ten times more of the synthetic structures with four to six d-alanine-substituted polyglycerophosphate units (50 nM) than of the native LTA preparation was required to induce IL-8 release. A further reduction to three backbone units with two or no d-alanine residues resulted in cytokine induction only from 500 nM. The synthetic anchor was not able to induce IL-8 release even at 5 muM. When the LTA derivatives were used at 500 nM, they induced increasing levels of IL-8 and tumor necrosis factor alpha with increasing elongation of the backbone. Peritoneal macrophages were less responsive than human blood to the synthetic structures. Therefore, TLR2 dependency could be shown only with cells from TLR2-deficient mice for the two largest synthetic structures. This was confirmed by using TLR2-transfected HEK 293 cells. Taken together, these data indicate that although the synthetic anchor (which, unlike the native anchor, contains only myristic acid) cannot induce cytokine release, the addition of three backbone units, even without d-alanine substituents, confers this ability. Lengthening of the chain with d-alanine-substituted backbone units results in increased cytokine-inducing potency and a more sensitive response.
منابع مشابه
Definition of structural prerequisites for lipoteichoic acid-inducible cytokine induction by synthetic derivatives.
The controversy about the immune stimulatory properties of lipoteichoic acid (LTA) from Staphylococcus aureus was solved recently by showing decomposition and inactivation of LTA obtained by conventional purification strategies, as well as pronounced LPS contamination of commercial preparations. By introducing a novel preparation method, the structure of bioactive LTA was elucidated. This struc...
متن کاملInduction by Synthetic Derivatives Lipoteichoic Acid-Inducible Cytokine Definition of Structural Prerequisites for
متن کامل
Synthesis of Staphylococcus aureus lipoteichoic acid derivatives for determining the minimal structural requirements for cytokine induction.
For the investigation of the minimal structural requirements for cytokine induction, Staphylococcus aureus lipoteichoic acid derivatives with two, three, four, and five glycerophosphate backbone moieties, carrying each a d-alanyl residue, were needed. Based on two different glycerophosphate building blocks and 6b-O-phosphitylated gentiobiosyl diacylglycerol the desired target molecules (compoun...
متن کاملSynthetic Lipoteichoic Acid from Staphylococcus aureus Is a Potent Stimulus of Cytokine Release
We recently purified lipoteichoic acid (LTA) from Staphylococcus aureus to more than 99% purity by a novel preparation method and deduced its structure with the first nuclear magnetic resonance (NMR) of a complete LTA. In contrast to Gram-negative lipopolysaccharides, this LTA requires the toll-like receptor (TLR)-2 and not TLR-4 for cytokine induction in monocytes and macrophages. To elucidate...
متن کاملNovel synthetic (poly)glycerolphosphate-based antistaphylococcal conjugate vaccine.
Staphylococcal infections are a major source of global morbidity and mortality. Currently there exists no antistaphylococcal vaccine in clinical use. Previous animal studies suggested a possible role for purified lipoteichoic acid as a vaccine target for eliciting protective IgG to several Gram-positive pathogens. Since the highly conserved (poly)glycerolphosphate backbone of lipoteichoic acid ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical and vaccine immunology : CVI
دوره 14 12 شماره
صفحات -
تاریخ انتشار 2007